

INFLUÊNCIA DA CHUVA SOBRE OS PARÂMETROS FÍSICO-QUÍMICOS NA ÁGUA DA LAGOA DO IFMT – BELA VISTA

FONTES, Luany P. C.

Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso – IFMT, Graduanda em Tecnologia em Gestão Ambiental, bolsista de Iniciação Científica pelo Conselho Nacional de Desenvolvimento Científico e Tecnologia (CNPq).

FRIOZO, Aurélio Rafael; FARIA, Rozilaine, A. P. G; FARIA, Jorge L. B.

Email: luany.costa@hotmail.com

RESUMO

O presente trabalho foi realizado no período de dezembro de 2011 á maio de 2012 (período chuvoso), no Instituto Federal de Mato Grosso, no campus Bela Vista. Foram analisados, durante 5 (cinco) meses, alguns parâmetros, tais como: pH, Turbidez, Alcalinidade, Precipitação e Temperatura, com o objetivo de avaliar a influência da chuva na lagoa, localizada no campus. Notou-se que os parâmetros físico-químicos variaram de acordo com o regime da chuva, por se tratar de um sistema fechado (sem afluentes).

PALAVRAS-CHAVE: Chuva, análise, parâmetros físico-quimicos, água.

1. INTRODUÇÃO

A crescente urbanização iniciou o processo de degradação ambiental necessitando de uma discussão mais dinâmica sobre a sustentabilidade do meio ambiente (Jacobi, 2003). Para garantir a qualidade no abastecimento de água em uma comunidade, é necessário remover as partículas presentes em suspensão através da adição de coagulantes. Entre os coagulantes mais empregados utiliza-se o sulfato de alumínio. (Guerra e Angelis, 2005).

O material sedimentado, também denominado lodo, pode ser disposto em aterro sanitário, utilizado na fabricação de cimento e tijolos, produção de solo comercial e utilização em indústrias de cerâmicas ou ser lançado em redes coletoras de esgotos (Tsutiya e Hirata, 2001). No entanto, o alumínio presente no lodo pode contaminar o solo e comprometer a qualidade do meio ambiente inviabilizando, inclusive, o emprego do lodo na agricultura (Andreoli, 2001). Essa disposição dependerá da viabilidade técnica, econômica e ambiental do resíduo gerado (Megda *et al*, 2005).

Além da importância do conhecimento do tipo e quantidade de lodo gerados e que está condicionado ao teor de sólidos sedimentáveis, outros parâmetros como pH e turbidez se interrelacionam com a fauna e a flora de um corpo hídrico, pois interferem na manutenção da vida aquática e equilíbrio do ecossistema. Um corpo aquático com alto teor de material particulado comprometerá o equilíbrio de gases na massa líquida, entre eles o oxigênio dissolvido comprometendo a interação entre os diversos microrganismos presentes no local (Naime e Fagundes, 2005).

2. MATERIAIS E MÉTODOS

2.1. - Caracterização da área de estudo

O IFMT campus Bela Vista está localizado em Cuiabá-MT, com as coordenadas geográficas 15° 34° 43,50" S e 56° 03'45,74" O (Figura 1).

Figura 1: Imagem de satélite do campus IFMT-Bela Vista. Em destaque a lagoa Fonte: Google Maps, 2012

A lagoa presente no campus do instituto fora construída inicialmente com a finalidade de conter a água da chuva. Porém animais silvestres e alguns anfíbios presentes na área utilizam a água para dessedentação.

2.2. Avaliação dos parâmetros físico-químicos

2.2.1. Obtenção das amostras de água

As amostras de água foram obtidas a 20cm de profundidade da superfície e distante 1m da margem, mensalmente durante os meses de dezembro/2011 a maio/2012 (período chuvoso).

2.2.2. Análises pH, turbidez, alcalinidade e dosagem do sulfato de alumínio

O pH foi medido imediatamente após a coleta com potenciômetro digital de bancada. Os sólidos em suspensão foram medidos com turbidímetro após padronização do equipamento. O ensaio de Jar Test foi desenvolvido para adequação da dosagem do sulfato de alumínio.

As análises de pH, temperatura, sólidos sedimentáveis e turbidez foram feitas em triplicata e em conformidade com o Standard Methods for Water and Wastewater (APHA, 1992).

Os dados de precipitação foram obtidos pelo INMET (Instituto Nacional de Meteorologia).

3. RESULTADOS OBTIDOS

O pH da água analisada variou entre 6,60 a 7,08 e a temperatura média da água foi 25,1 °C . A turbidez apresentou valores altos, em média de 781,16 NTU (para a água bruta). Deve-se ressaltar que as amostras foram coletadas na estação chuvosa (dezembro/2011 a maio/2012), com precipitação média mensal de 162,37 mm durante o período de estudo. Verificou-se que a melhor dosagem de sulfato de alumínio foi de 7 ml/L sendo o valor aumentado para 10ml/L nos meses onde houve aumento da precipitação (Tabela 1).

Tabela 1: Parâmetros físico-químicos analisados da lagoa do IFMT-campus Bela Vista

Mês coletado	pН	Turbidez (NTU)	Precipitação (mm)	Alcalinidade (mg/L CaCO ₃)	Temperatura da água (°C)
Dezembro	6,71	967	91,2	28	28,5
Janeiro	6,72	866	129,4	26	19,3
Fevereiro	6,6	815	188,2	28	26
Março	6,85	765	217,6	54	26,3
Abril	6,89	873	80,4	34,6	26,5
Maio	7,08	401	267,4	63,6	24
Valor médio	6,8	781,16	162,37	39,03	25,1

A turbidez elevada pode comprometer a capacidade fotossintética dos microorganismos através da diminuição da luz solar (Naime e Fagundes, 2005). Conforme Richter (2009) as chuvas influenciam diretamente nos valores de material em suspensão em um corpo hídrico, devido o carreamento de material particulado, sendo a turbidez considerada uma medida indireta dos sólidos em suspensão. No entanto, a relação entre turbidez e precipitação ocorreu de forma invertida. Provavelmente, devido o regime hídrico da lagoa estar condicionado ao regime pluviométrico. Sugere-se que a amostra coletada para análise ocorreu após a sedimentação do material particulado, aumentando o volume da massa líquida e diminuindo o material particulado em suspensão influenciando na correlação entre chuva-material particulado em suspensão. Também é possível que o processo de evaporação natural tenha contribuído para valores maiores de turbidez no meses em que houve menor volume pluviométrico. Naime e Fagundes (2005) observaram diminuição da turbidez devido a dispersão do material particulado na massa líquida.

Águas naturais podem ter valores de pH entre 6 a 8, porém como observado por Naime e Fagundes (2005), os valores de pH podem baixar em função do aumento no regime pluviométrico. No entanto, na água analisada, o pH aumentou para 7,08 em maio, mês em que houve maior registro no volume de chuva. A alcalinidade também aumentou no mesmo mês, o que se verifica pela presença de íons bicarbonato (HCO₃) comuns em água naturais onde o pH se encontra na faixa de 4,6 a 8,3. (Richter, 2009).

O estudo foi desenvolvido na época chuvosa devendo ser complementado com análises no período da seca possibilitando melhor compreensão entre a interação da lagoa com a fauna e flora local.

4. CONCLUSÃO

Os parâmetros físico-químicos da lagoa variaram em função do regime de chuva. Por ser um sistema fechado e que não recebe contribuição de afluentes, o volume da lagoa aumenta no período chuvoso e diminui no período da seca. É necessário continuidade das medidas para avaliação dos parâmetros no período da seca.

5. AGRADECIMENTOS

Os autores agradecem ao CNPq pela concessão de bolsa PIBITI ao primeiro autor, ao IFMT pela disponibilidade dos laboratórios para análise e ao INMET pela disponibilização dos dados pluviométricos.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. AMERICAN PUBLIC HEALTH ASSOCIATION. Standards methods for the examination of water and wastewater. 15. Ed. Washington, DC: APHA-AWWA-WPCF, 1992.
- 2. ANDREOLI, C.V. Resíduos sólidos do saneamento: processamento, reciclagem e disposição final. In: ANDREOLI, C. V. (Coord.). Projeto PROSAB. Rio de Janeiro: RiMa, ABES, 2001.
- 3. GUERRA, R.C.; ANGELIS, D.F.D. Classificação e biodegradação de lodo de estações de tratamento de água para descarte em aterro sanitário. Arquivos do Instituto Biológico, v.72, n.1, p. 87-91, 2005.
- 4. JACOBI, P. Educação ambiental, cidadania e sustentabilidade. Cadernos de Pesquisa, n. 118, p. 189-205, 2003.
- 5. MEGDA, C.R.; SOARES, L.V.; ACHON, C.L. Propostas de aproveitamento de lodos gerados em ETA's. In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 23., 2005, Campo Grande. Anais. Campo Grande: ABES [CDROM], 2005.
- 6. NAIME, R.; FAGUNDES, R.S.. Controle da qualidade da água de Arroio Portão-RS. Pesquisas em Geociências, v.32, n.1, p. 27-35, 2005.
- 7. RICHTER, C.A.. Água-métodos e tecnologia de tratamento. São Paulo-SP: Blucher, 2009. 340p.
- 8. TSUTIYA, M. T.; HIRATA, A.Y. Aproveitamento e disposição final de lodos de estações de tratamento de água do estado de São Paulo. In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 21. João Pessoa: ABES [CDROM], 2001.