

APROVEITAMETO DE RESÍDUOS DE ORIGEM FLORESTAL PARA A PRODUÇÃO DE CARVÃO

Renata Prussak Gabardo⁽¹⁾

Graduanda em Tecnologia em Processos Ambientais pela Universidade Tecnológica Federal do Paraná, estagiária na Embrapa Florestas.

Naiara Méqui Poiate

Graduanda em Engenharia Ambiental pela Universidade Federal do Paraná, estagiária na Embrapa Florestas

Edson Alves de Lima

Pesquisador da Embrapa Florestas

Washington Luiz Esteves Magalhães

Pesquisador da Embrapa Florestas

Endereço⁽¹⁾: Rua José Leal Fontoura-536, Casa, Centro, Colombo/Paraná, CEP 83.414-190. Fone: (41) 9664-7359. e-mail: renata.p.gabardo@gmail.com

RESUMO

A busca por diferentes fontes energéticas renováveis é necessária devido ao aumento da demanda de energia. Neste trabalho buscou-se avaliar a possibilidade de aproveitamento de quatro tipos de resíduos florestais e da indústria de papel e celulose para carbonização e produção de briquetes. Foram analisados resíduos de lodo do tratamento de efluentes de uma indústria de reciclagem de papel, bainha do palmito da espécie *Bactris gasipaes* (pupunha), grimpa da *Araucaria angustifolia* e pó de *Pinus taeda* gerado do desdobro primário de tábuas. O resíduo de pinus é o mais adequado para produção de carvão, devido seu baixo valor de cinza e alto valor de carbono fixo. Desta forma, os resíduos de origem florestal são uma alternativa viável para a produção de carvão.

PALAVRAS-CHAVE: <u>carbonização</u>, resíduo florestal, energia renovável.

INTRODUÇÃO

Com o aumento da demanda mundial de energia, principalmente de combustíveis fósseis, a busca por diferentes fontes energéticas, em especial as renováveis, tornou-se necessária. Atualmente utiliza-se madeira de espécies como o *Eucalyptus benthamii, Eucalyptus urophylla*, entre outras, na produção de carvão vegetal, um componente importante na matriz energética brasileira. Nesse contexto de diversificação das fontes energéticas renováveis, a utilização de resíduos florestais e da indústria de papel e celulose torna-se uma alternativa bastante interessante, cujo aproveitamento pode ser pela queima direta destes resíduos, pela compactação (produção de briquetes ou pellets) ou pela carbonização (produção de carvão) seguida de compactação.

A carbonização é o processo no qual a madeira ou outro material lignocelulósico é submetido a elevadas temperaturas em pressão constante e atmosfera com ausência de oxigênio. [1]. Nesse processo ocorre a degradação térmica dos principais componentes como celulose, hemicelulose e lignina. Como resultado da decomposição gradativa do material de origem obtem-se como produtos carvão e gases voláteis, sendo que parte destes gases é condensável, obtendo-se o licor pirolenhoso.

Desta forma, o aproveitamento dos resíduos florestais e da indústria de celulose e papel para produção de briquetes a partir do carvão obtido pode ser viável, dependendo das características do carvão produzido. Pensando nisso, neste

trabalho buscou-se avaliar a possibilidade de aproveitamento de quatro tipos de resíduos florestais e da indústria de celulose e papel para carbonização e produção de briquetes.

MATERIAIS E MÉTODOS

Foram testados os seguintes resíduos: lodo do tratamento de efluentes de uma indústria de reciclagem de papel, bainha do palmito da espécie *Bactris gasipaes* (pupunha), grimpa da *Araucaria angustifolia* e pó de *Pinus taeda* gerado do desdobro primário de tábuas.

As amostras de lodo, pupunha, grimpa e pinus foram secas em estufas a 100°C ± 5 °C, moídas em moinho de facas MR340 e peneiradas utilizando para o trabalho a fração retida entre 42 e 60 mesh. Essas amostras foram colocadas em tubos de aço carbono e levadas a uma mufla Quimis 319 adaptada para carbonização. Esta mufla foi programada para realizar a carbonização numa taxa de 1,4 °C/min até atingir a temperatura de 550 °C e mantendo por duas horas nessa temperatura.

A análise imediata do carvão obtido foi realizada utilizando a norma ABNT NBR 8112/86 [2]. Para o poder calorífico utilizou-se calorímetro da Ika-Werke C5003. As análises de extrativos foram feitas utilizando a ABNT NBR 14853/02 [3] e de teor de lignina utilizando a ABNT NBR 7989/03 [4].

RESULTADOS E DISCUSSÕES

O aspecto visual das amostras antes e após a carbonização pode ser observado na Figura 1.

1: (a) lodo *in natura*; (b) grimpa *in natura*; (c) pinus *in natura*; (d) pupunha *in natura*; (e) lodo carbonizado; (f) grimpa carbonizada; (g) pinus carbonizado; (h) pupunha carbonizada

A caracterização dos resíduos *in natura* para determinar a composição química de cada um dos materiais está apresentada na Tabela 1. As características analisadas foram: extrativos, lignina, holocelulose e poder calorífico. A análise química do lodo não foi realizada, por este ser um resíduo composto majoritariamente de celulose e materiais inorgânicos.

Tabela 1. Caracterização química e poder calorífico dos resíduos

	Extrativos totais (%)	Lignina (%)	Holocelulose (%)	P.C. (MJ/kg)	
Lodo	-	-	-	6,18	
Grimpa	$7,82 \pm 0,57$	44,62 ± 0,23	47,56	19,60	
Pinus	$2,20 \pm 0,40$	$29,30 \pm 0,40$	68,50	18,22	
Pupunha	$4,84 \pm 0,39$	$21,65 \pm 0,08$	73,51	17,43	

A química dos materiais lignocelulósicos mostrou que o resíduo de grimpa apresentou maior valor de extrativos e lignina. A soma da holocelulose, lignina e extrativos representa 100% da composição química dos materiais, portanto, neste trabalho, a holocelulose foi determinada pela seguinte equação (1):

$$\mathbf{H} = \mathbf{100} - (\mathbf{L} + \mathbf{E})$$
 equação (1)

onde H é holocelulose (%), L é lignina (%) e E é extrativo (%).

No entanto, para pupunha o valor de 73,51% compreende, além de holocelulose, açúcares livres e outros compostos.

Os materiais lignocelulósicos tiveram valores de poder calorífico próximos, cerca de 18%. O lodo apresentou um poder calorífico de 6,18 MJ/kg, essa diferença do valor em relação aos materiais lignocelulósicos foi devido a grande quantidade de materiais inorgânicos presente no lodo.

Na tabela 2, estão os valores de rendimento após a carbonização do material.

Tabela 2. Rendimento da carbonização dos resíduos.

0					
	Rendimento do carvão (%)	Rendimento do licor pirolenhoso (%)			
Lodo	78,13	19,18			
Grimpa	39,87	34,15			
Pinus	23,49	43,19			
Pupunha	31,19	40,34			

O lodo apresentou um rendimento de 78,13% de carvão e 19,18% de licor pirolenhoso, esse fato também pode ser explicado devido à quantidade de inorgânicos presentes neste material. Os materiais lignocelulósicos apresentaram valores de rendimentos na faixa de 30% e 40% para carvão e licor pirolenhoso.

Após a carbonização foram feitas as medidas de poder calorífico e a caracterização pela análise imediata (cinzas, voláteis e carbono fixo), cujos valores se encontram na Tabela 3.

Tabela 3. Análise imediata (cinzas, voláteis e carbono fixo) e poder calorífico dos carvões obtidos a partir de quatro tipos de resíduos

quatio tipos de l'esiduos						
	Cinzas (%)	Voláteis (%)	Carbono fixo (%)	P.C. (MJ/kg)		
Lodo	$73,2 \pm 0,8$	$29,49 \pm 2,41$	N.D*	3,03		
Grimpa	$9,10 \pm 0,10$	18,60 ± 1,20	72,3	27,99		
Pinus	$1,05 \pm 0,08$	16,31 ± 0,66	82,64	32,05		
Pupunha	$10,55 \pm 0,19$	$13,44 \pm 1,00$	76,01	28,11		

^{*}não detectado pela técnica

O pinus apresentou os melhores valores das análises, devido seu baixo valor de cinza e alto valor de carbono fixo. Esses valores são próximos dos encontrados na literatura para carvões produzidos com *Eucalyptus urophylla* utilizados comercialmente.

A grimpa e a pupunha apresentaram cerca de 10% de cinzas, elas também podem ser uma alternativa na produção de briquetes, pois para ser considerado um carvão de qualidade o carbono fixo precisa apresentar um valor maior que 75%.

Após a carbonização houve um aumento no poder calorífico dos materiais lignocelulósicos em relação ao material *in natura*. Esse fato é explicado pela remoção de oxigênio e hidrogênio, concentrando energia em carbono, pois quanto maior o teor de carbono fixo maior também o poder calorífico dos materiais.

Para o lodo houve uma redução no poder calorífico, pois esse material in natura é composto por cerca de 40% de celulose e o restante, majoritariamente, inorgânicos. Durante a carbonização a celulose é degradada fazendo com que o poder calorífico diminua em relação ao material in *natura*, pois esse material carbonizado apresenta baixa quantidade de material orgânico.

CONCLUSÃO

Os resíduos de origem florestal são uma alternativa viável para a produção de carvão. Porém, tornam-se necessários estudos complementares na área de compactação dos carvões produzidos, tanto em aspectos técnicos quanto econômicos.

O carvão produzido a partir do lodo não apresentou características favoráveis ao seu aproveitamento para a produção de carvão, devido ao elevado teor de inorgânicos.

REFERÊNCIAS BIBLIOGRÁFICAS

- FIGUEIREDO, C. K. Análise estatística do efeito da pressão na carbonização da madeira de *Eucalyptus grandis*. Dissertação de mestrado em Ciências Florestais. Departamento de Engenharia Florestal. Universidade de Brasília, 2009.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8112: Carvão vegetal Análise imediata. Outubro. 1986.
- NBR 14853: Madeira Determinação do material solúvel em etanol: tolueno e em diclorometano. Maio. 2002.
- 4. _____ **NBR 7989**: Pasta celulósica e madeira determinação de lignina insolúvel em ácido. Setembro. 2003.