

OBTENÇÃO DE GEOPOLÍMERO A PARTIR DO METACAULIM COM ADIÇÃO DE REJEITO DE MINERAÇÃO DEPOSITADO NA BARRAGEM DE CÓRREGO DO FEIJÃO (Brumadinho – MG, Brasil)

Jouber Paulo Ferreira (*), Fabiana Marciana Abreu Santos, Sinthya Gonçalves Tavares, Maria Teresa Paulino Aguilar

* Universidade Federal de Minas Gerais; jouber.paulo@hotmail.com

RESUMO

No presente trabalho analisou-se ativação alcalina, pelo método "one-part mix", do metacaulim com e sem incorporação de rejeito de minério de ferro contido na lama da barragem de Brumadinho - MG com vistas à produção de geopolímeros. Os resultados indicam que as substituições de 25% e 50% não afetaram negativamente a geopolimerização mas contribuíram para o abaixamento da resistência à compressão nas primeiras idades. Apenas as amostras de geopolímero sintetizadas com 12,5% de rejeito de minério em substituição do metacaulim mantiveram a resistência à compressão mecânica aos 28 dias em índices aceitáveis.

PALAVRAS-CHAVE: Lama de rejeito, Minério de ferro, Geopolímero, Metacaulim, Brumadinho.

ABSTRACT

In the present paper, alkaline activation was analyzed by the "one-part mix" method of metakaolin with and without the incorporation of iron ore tailings contained in the mud of the Brumadinho-MG dam with a view to the production of geopolymers. The results obtained as substitutions of 25% and 50% did not negatively affect geopolymerization but contributed to the lowering of the compressive strength in the early ages. Only the geopolymer samples synthesized with 12.5% ore tailings to replace metakaolin maintained the resistance to mechanical compression at 28 days at acceptable rates.

KEY WORDS: Mining tailings sludge, Iron ore, Geopolymer, Metakaolin, Brumadinho.

INTRODUÇÃO

Geopolímeros são polímeros inorgânicos, obtidos por meio da ativação alcalina de alumino-silicatos em determinadas condições de pressão e de temperatura [22]. Os geopolímeros também são definidos como polímeros sílico-aluminosos obtidos por meio da poli-condensação de unidades tetraédricas de alumino silicatos e íons de metais alcalinos [10, 16]. No entanto, encontra-se na literatura uma abundância de nomenclaturas adotadas como cimento ativado alcalinamente, geopolímeros, geocimento, concreto de polímero inorgânico, cerâmica alcalina, dentre outras [23]. Estes ligantes tem como beneficios-alta resistência, durabilidade, e redução do impacto ambiental [2]. Outra vantagem apresentada por esses ligantes é o custo relativamente baixo para a produção, visto que, geralmente, são produzidos a partir de materiais fonte de aluminossilicatos (MURILLO et al., 2017).

A geopolimerização tradicional, denominada de duas partes, consiste na reação de um alumino-silicato sólido com um hidróxido alcalino em solução, originando um alumino-silicato alcalino sintético [8, 16]. Davidovits (2002) explicou o fenômeno que acontece espontaneamente com os alumino-silicatos como o metacaulim que se transformam em baixa temperatura e em um curto espaço de tempo em tecto-aluminosilicatos tridimensionais. Esse método é similar ao da policondensação das resinas orgânicas que produzem nanocompósitos. A reação de geo-síntese provoca na alumina (Al), por meio da ativação alcalina, a alternância com os átomos de Silício (Si) compartilhando oxigênio em coordenação tetraédrica [11]. A polimerização pode ser influenciada por parâmetros tais como a temperatura de cura, a quantidade de água, a concentração alcalina, o conteúdo inicial de sólidos, a relação sílica/ alumina, o potencial hidrogeniônico (pH) e o tipo de ativador utilizado [13].

Com relação à produção, em especial à manipulação de álcalis, recentes pesquisas caminham para uma nova geração de geopolímeros obtidas a partir da ativação alcalina-térmica ou termo-álcali ativação [16, 17]. Ke *et al.* (2015) produziram novos compostos, denominados "just add water" ou "one-part-mixing", pela adição de água a uma mistura obtida da calcinação à 800 °C de lama vermelha (rica em alumina e cálcio) e pastilhas de hidróxido de sódio. Também, foram realizadas sínteses de geopolímeros de uma parte em misturas contendo diferentes teores de silicato de sódio, curadas em temperatura ambiente [19].

3°Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

Trabalhos da literatura indicam ser possível ativar alcalinamente pelo método tradicional rejeitos de mineração (FILIZZOLA *et al.*, 2019). Em Minas Gerais, por decorrência dos desastres envolvendo barragem de rejeitos, se tornou de suma importância a destinação adequada para esses resíduos. Neste contexto, avalia-se nesse trabalho o uso da lama de rejeitos de minério de ferro proveniente da barragem "Córrego do Feijão" situada no município de Brumadinho-MG, em substituição parcial ao metacaulim para produção de geopolimero pelo método *one-part* utilizando dois tipos de ativadores.

MATERIAIS E MÉTODOS

Foram ativadas alcalinamente quatro misturas com e sem substituição parcial do metacaulim por lama de minério de ferro. Foram utilizados o Metacaulim HP Ultra comercializado e fornecido pela Metacaulim do Brasil e a lama de rejeito de minério proveniente do local do rompimento da barragem associada à Mineradora Vale S.A., no município de Brumadinho – MG. A lama de minério de ferro necessitou passar pelo processo de secagem à 100°C durante 4 horas em forno elétrico [16] e, posteriormente a seu resfriamento, foi moída em moinho de bolas. A composição química do metacaulim e da lama de rejeito de minério de ferro, obtidas por meio de espectrometria de fluorescência de raios-X (FRX) e perda ao fogo, são apresentadas na Tabela 1. O metacaulim destaca-se por apresentar altas porcentagens de ambos os óxidos preponderantes à geopolimerização: 51,3% de sílica e 38,0% de alumina. No metacaulim a razão molar SiO₂/Al₂O₃ é de 2,29, o que corresponde a uma relação atômica Si/Al de 1,15. Davidovits (2002) afirma que a proporção entre o silício e o alumínio determina o tipo de estrutura tridimensional dos aluminossilicatos e, consequente, suas características e aplicação. Esta relação encontrada nos materiais precursores utilizados não favorece à reação de polimerização e tal deficiência foi compensada com uso de silicato de sódio sólido [16, 24]. A faixa granulométrica dos materiais precursores e ativadores adotada para a formulação das amostras correspondeu à faixa passante na peneira cuja abertura é equivalente a 45 mm.

Tabela 1 - Composição Química do Metacaulim e Lama de Rejeito de Minério.

Fonte: Autor do trabalho.

Tonte. Autor do trabamo.												
(% em Peso)	SiO ₂	Al ₂ O ₃	CaO	K ₂ O	Fe ₂ O ₃	TiO ₂	MgO	Na ₂ O	SO ₃	Outros	LOI*	
Metacaulim	51,3	38,0	0,09	2,8	2,58	1,63	0,91	0,08	0,04	2,57	2,22	
Lama de Rejeitos de Minério	21,8	11,9	0,10	0,51	54,4	0,32	0,29	<0,1		2,33	8,14	

*LOI – Perda ao fogo

O difratograma do metacaulim (Figura 1) apresentou um conjunto de picos de difração de fases cristalinas, indícios da existência de fases como quartzo ($2\theta = 21^\circ$, 26° , 36° , 42° , 50° , 60° , 68°), moscovita ($2\theta = 18^\circ$, 20° , 35° , 38°) e anatase ($2\theta = 25^\circ$, 48° , 55°). Pode-se observar a presença de um halo, correspondente à existência de fase amorfa, entre $2\theta = 18^\circ$ a 30° [1, 8, 20]. Na Figura 2 é apresentado o difratograma da lama de rejeito de minério, no qual se detectou apenas picos de difração de fases cristalinas, indícios da existência de fases tais como quartzo ($2\theta = 13^\circ$, 25° , 36° , 42° , 50° , 67°), hematita ($2\theta = 26^\circ$, 33° , 35° , 39° , 41° , 49° , 54° , 57° , 62° , 64° , 69° , 71° , 75° , 77° , 82° , 85° e 88°) e goetita ($2\theta = 17^\circ$, 34° , 36° , 37° , 40° , 42° , 45° , 48° , 51° , 53° , 55° , 58° , 63° , 65° , 67° , 73° , 76° , 79° , 83° e 86°).

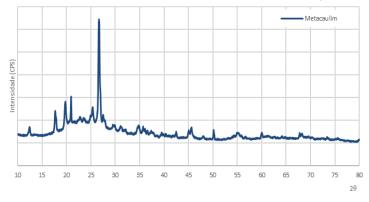


Figura 1 - Padrão de difração obtido por DRX para o metacaulim. Fonte: Adaptado de Alvarenga, 2018.

3° Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

Figura 2 - Padrão de difração obtido por DRX para a lama de rejeito de minério. Fonte: Autor do trabalho.

Os resultados obtidos, por espectrometria por infravermelho do metacaulim e lama de minério de ferro, são apresentados nas Figuras 3 e 4, respectivamente, onde são identificados os picos de absorção para cada material. De acordo com Alvarenga (2018) o espectro do metacaulim indica a existência de uma rede aleatória e contínua de aluminossilicatos amorfos, favoráveis a geopolimerização.

Figura 3 – Espectro de FTIR do Metacaulim. Fonte: Adaptado de Alvarenga, 2018.

O espectro de infravermelho da lama de rejeito de minério (Figura 4) mostra três picos em torno de 480, 520 e 580 cm⁻¹, que são referentes à rede de Fe₂O₃. Foram verificadas outras bandas de absorção (entre 1350 cm⁻¹ a 3250 cm⁻¹), ocasionadas pela presença de CO₂ e água da atmosfera. Costa (2012) revela a existência de muitas discrepâncias referentes a localização das bandas de Infravermelho, dentro da região (<600 cm⁻¹) e que pode ser utilizado como uma assinatura para identificação da hematita. Tal indicação de diferenças dentro das bandas de absorção pode ser reflexo da existência de impurezas e defeitos do cristal, substituições isomórficas e diferentes graus de cristalinidade.

3°Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

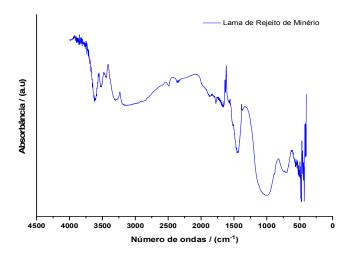


Figura 4 – Espectro de FTIR da Lama de Rejeito de Minério. Fonte: Autor do trabalho.

Na ativação dos precursores foi utilizado hidróxido de sódio (NaOH) na forma de micropérolas da Labsynth e o silicato de sódio sólido em pó da Auro's Química Ltda. Na Figura 5 são apresentados os materiais utilizados para a confecção das pastas.

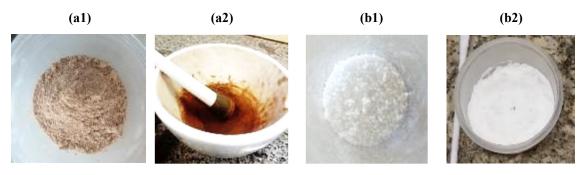


Figura 5 - a) Precursores: 1 - metacaulim e 2- lama de rejeito de minério; b) Ativadores: NaOH e Na2SiO3. Fonte: Autor do trabalho.

A composição, moldagem e caracterização das pastas geopoliméricas se realizou como base nas normas de referência do cimento Portland, elementos da literatura e orientações técnicas do fabricante, devido à carência de normatização específica [12]. Foram preparadas 4 misturas (Tabela 2), denominadas: MKREF contendo o metacaulim como precursor (Figura 6a); MKL125 composta com 87,5% de metacaulim e 12,5% de lama de rejeito de minério; MKL250 com proporção de 75% de metacaulim e 25% de lama de rejeito de minério: e MKL500 com proporções iguais de metacaulim e lama de rejeito de minério (Figura 6b). Para a elaboração das pastas estudadas foi utilizada a proporção de 38,9% de ativadores para 40,73% de material precursor, em peso, sendo então adicionado 20,4% de água potável. Liew et al. (2017) apresenta a importância do ativador alcalino no processo de geopolimerização, relacionando o aumento da concentração dos íons hidróxidos com a intensidade das fases formadas e, por sua vez, os produtos de hidratação. Segundo ele, as proporções de Si/Al e dos ativadores afetam mais significativamente as propriedades mecânicas dos geopolímeros, seguidas pelas razões de água/sólido e da condição de cura dos corpos de prova [2, 16].

de Resíduos Sólidos e Sustentabilidade

Tabela 2 - Parâmetros para composição das pastas analisadas. Fonte: Autor do trabalho.

DOSAGEM	PRECUI (40,7	ATIVADORES (38,90 %)		ÁGUA	Água /Sálida	SiO ₂ /Al ₂ O ₃	Si/Al	
AMOSTRA	METACAULIM (%)	LAMA MINÉRIO (%)	Na₂SiO₃ (%)	NaOH (%)	(%)	Água/Sólido	0 3102/A1203	JI/AI
MK REF	100	0,0	95,0	5,0	20,4	0,26	4,464	2,63
MKL125	87,5	12,5	95,0	5,0	20,4	0,26	4,138	2,6
MKL250	75	25,0	95,0	5,0	20,4	0,26	3,835	2,57
MKL500	50	50,0	95,0	5,0	20,4	0,26	3,291	2,52

Figura 6 - Pastas analisadas (a) MK REF, (b) MKL500. Fonte: Autor do trabalho.

Todas as fabricações das pastas analisadas seguiram o mesmo procedimento: inicialmente se produziu manualmente uma mistura homogênea do precursor e ativador; em seguida adicionou-se a água e imediatamente iniciou-se a medição da temperatura na pasta, com termômetro digital tipo espeto cuja faixa de temperatura: -50 ~ 300° C (-58 ~ 572° F) e precisão da temperatura: ±0,1° C (0,1° F), durante o período do processo de homogeneização manual até alcançar o pico máximo de temperatura. Depois de realizada a mistura, foram moldadas as amostras de 25 milímetros de diâmetro e 50 milímetros de comprimento, seladas com filme plástico e desmoldadas após 24 horas de cura [24]. Os materiais sintetizados foram caracterizados por DRX, FTIR e ensaios de resistência à compressão.

Os difratogramas foram realizados em um difratômetro Philips-PANalytical modelo PW3710, utilizando radiação CuKa e monocromador. O método de análise se baseia na comparação dos valores das distâncias interplanares e das intensidades dos picos nos difratogramas das amostras analisadas e uma amostra de referência, utilizando o padrão do banco de dados PDF-2 Release 2010 do ICDD – International Centre for Diffraction Data.

Os ensaios de espectrometria por infravermelho foram realizados com uso de 0,2% de substrato de brometo de potássio (KBr) pulverizado. Foram desenvolvidos os ensaios no equipamento FT-IR Spectrometer Spectrum 1000, Perkin Elmer, repetindo 32 vezes na faixa de número de onda compreendida entre 300-4000 cm⁻¹, com resolução de 4 cm⁻¹ e em intervalos de 2 cm⁻¹.

Os ensaios de resistência à compressão foram realizados aos 1, 7, 21 e 28 dias, no sistema de ensaios de piso, universal - Instron 5582, com capacidade de 100kN.

O trabalho experimental foi realizado nos laboratórios da Universidade Federal de Minas Gerais (UFMG) e da Faculdade de Engenharia e Agrimensura de Minas Gerais (FEAMIG).

RESULTADOS

A temperatura máxima alcançada no estado fresco para a pasta MKREF foi de 51,8° C. Para as pastas MKL125, MKL250 e MKL500 as temperaturas máximas alcançadas foram respectivamente 57,1° C, 55,6° C e 45,9° C. Duxon (2007b), afirma que temperaturas mais elevadas encontradas nas pastas geopoliméricas durante a preparação, são fatores

3°Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

indicativos que podem estar associados à velocidade da reação de polimerização, provocando a mudança na microestrutura devido aos processos químicos ocorridos na fase de dissolução durante essa reação.

Na Figura 7 são apresentadas as bandas de absorção no infravermelho obtidos por Espectroscopia no Infravermelho por Transformada de Fourier (FTIR), das pastas produzidas.

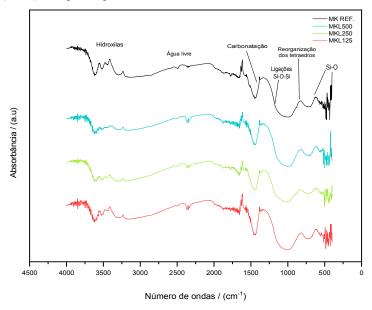


Figura 7 – Espectro de FTIR das pastas analisadas. Fonte: Autor do trabalho.

Os dados da Figura 7 indicam a ocorrência de geopolimerização nas quatro misturas:

- > pico em aproximadamente 621 cm⁻¹ que correspondem a monômeros Si-O [1];
- banda em aproximadamente 771 cm⁻¹ referente ao dobramento de Si-OH [1];
- ▶ pico em 839 cm⁻¹ característico da reorganização de tetraedros de AlO4 ou SiO4 [1];
- ▶ pico em aproximadamente 1128 cm⁻¹ que indica uma vibração assimétrica de estiramento relacionada às ligações de Si-O-Si [15].
- banda em, aproximadamente, 1427-1560 cm⁻¹ indica um processo de carbonatação. Esse processo poderia ser atribuído à formação de carbonatos a partir do hidróxido presente no ativador que não reagiu e o gás carbônico da atmosfera [1, 11];
- ➤ banda entre os ramos de 1652 cm⁻¹ e 3969 cm⁻¹ o indicativa da presença de água livre aprisionada em cavidades ou absorvida, gerada pelo processo de geopolimerização ou água zeolítica [3, 15].

Os difratogramas das pastas MKREF a MKL500, são apresentados nas Figuras de 8 a 11 separadamente. Em todas as amostras, correspondentes às Figuras 8 a 11, observa-se a presença de um halo, indicativa da existência de fase amorfa, entre $2\theta = 20^{\circ}$ a 35° , que se encontra deslocado em relação ao metacaulim ($2\theta = 18^{\circ}$ a 30°). Esta alteração tem sido atribuída à formação de novas fases amorfas, sendo indicativo da reação geopolimérica [1, 8, 20, 21]. Na Figura 8 é apresentado o difratograma da pasta de referência, denominada MKREF, cujos picos são identificados como pertencentes às fases, A = Laurelita, B = Berlinita e C = Oxido de magnésio.

3°Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

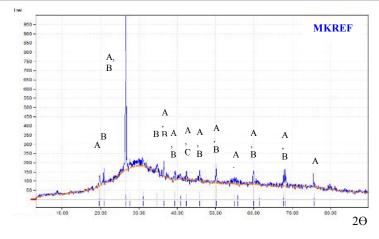


Figura 8 - Padrão de difração obtido por DRX para a pasta MKREF. Fonte: Autor do trabalho.

O difratograma da pasta MKL125 apresentado na Figura 9 possui picos identificados como pertencentes às fases D = Nitreto de Boro, E = Quartzo, F = Rondomita e G = Chalococita.

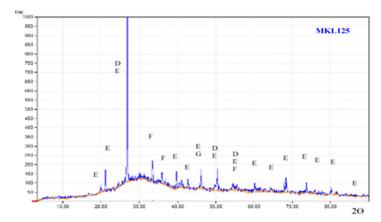


Figura 9 - Padrão de difração obtido por DRX para a pasta MKL125. Fonte: Autor do trabalho.

Na Figura 10 é apresentado o difratograma da pasta MKL250 cujos picos são identificados como pertencentes às fases, E = Quartzo, H = Óxido de Zircônio Tetragonal, I = Hematita, J = Azida de Sódio, K = Cromo-Titânio.

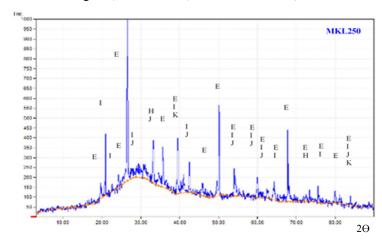


Figura 10 - Padrão de difração obtido por DRX para a pasta MKL250. Fonte: Autor do trabalho.

O difratograma da pasta de MKL500 (MKL500), apresentado na Figura 11 possui os picos correlacionados às fases D = Nitreto de Boro, E = Quartzo, I = Hematita, L = Dolomita, M = Cálcio.

3°Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

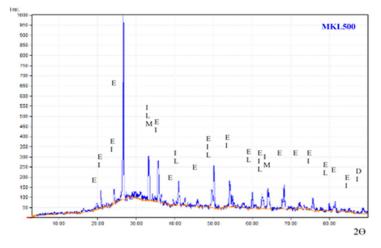


Figura 11 - Padrão de difração obtido por DRX para a pasta MKL500. Fonte: Autor do trabalho.

São apresentadas na Figura 12 as resistências à compressão específicas médias, que refletem a tendência de incremento direto com o aumento da idade de cura. Para todas as situações são obtidas, em 24 h, resistências à compressão acima de 5 MPa.

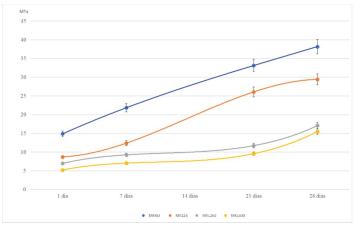


Figura 12 – Resistência à compressão axial das amostras em relação à idade de cura. Fonte: Autor do trabalho.

Observou-se na Figura 12, a evolução da resistência à compressão axial nas amostras estudadas entre 7 e 28 dias de cura, correlacionado à proporção de lama de rejeitos de minério nelas contidas, sendo maiores os índices de resistência encontrados nas amostras que possuíam até 12,5% de lama em sua formulação. Pode ser visto, também, o aumento da resistência à compressão em relação à idade de cura das amostras estudadas, à medida que a razão Si / Al das amostras estudadas aumenta de 2,52 a 2,63. O incremento de resistência à compressão nas amostras contendo 25% ou 50% de lama de rejeitos de minério, cujas relações Si / Al são respectivamente 2,57 e 2,52, foi inferior quando comparado com as amostras que possuíam relações Si / Al mais elevadas [8].

CONCLUSÕES

Este estudo teve como objetivo avaliar o uso lama de rejeitos de minério de ferro em substituição parcial ao metacaulim para produção de geopolímero pelo método one part utilizando dois ativadores distintos. Os resultados mostraram que:

- a) a geopolimerização foi observada em todas as pastas confeccionadas;
- b) as amostras das pastas geopoliméricas estudadas (MKREF à MKL500) apresentam vibrações em bandas similares, mas, a intensidade de absorção de onda nas amostras é distinta;
- c) as amostras MKREF à MKL500 apresentam os fenômenos de carbonatação, água de hidratação e a presença de hidroxilas, o que leva à conclusão que apresentam um processo semelhante;
- d) segundo a relação entre as intensidades dos picos de difração, verifica-se a presença das fases "Quartzo" em maior fração volumétrica nas amostras estudadas. Nota-se também que as intensidades relativas as fases "Nitreto de Boro" estão presentes nas pastas MKL125 e MKL500, sendo que nas pastas MKL125 à MKL500 apresentam fases diversificadas, pressupõe-se que essa divergência distinta em seus espectros tenha sido provocada devido

3° Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

- a heterogeneidade da lama de rejeito de minério e também, pela diferença existente entre as proporções dos precursores e ativadores;
- e) as amostras dos geopolímeros obtidos com nenhuma adição ou menores quantidades de lama de rejeito de minério (MKREF e MKL125) apresentaram maiores índices de resistência à compressão com o aumento das idades. A resistência à compressão dos geopolímeros produzidos tiveram aumentos após 21 dias de cura e apresentaram tendência de incremento até os 28 dias.

AGRADECIMENTOS

À CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) e CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) pelo apoio financeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ALVARENGA, C. B. C. S.; Síntese e caracterização de geopolímeros à base de metacaulim e micropartículas de vidro soda-cal [manuscrito] / Cristiane Bom Conselho Sales Alvarenga. 2018. 67 f., enc.: il.
- 2. ASKARIAN M., TAO Z., SAMALI B., ADAM G., SHUAIBU R. Mix composition and characterisation of one-part geopolymers with different activators. **Construction and Building Materials**. 2019; 225: 526-537. doi:10.1016/j.conbuildmat.2019.07.083
- 3. BORTOLATTO, L. B. **Síntese e caracterização de zeólita y com fontes alternativas de silício e alumínio.** (2014). 98 f. Dissertação (Mestrado) Universidade Federal de Santa Catarina.
- 4. COSTA, C. D., **Hematita: um novo método de síntese para a indústria**. (2012). 73f. Dissertação (Mestrado) Universidade Federal de São Carlos.
- 5. DAVIDOVITS, J.; Geopolymers: Inorganic Polymeric New Materials. **Journal of Thermal Analysis. In: Institute Géopolymère.** V.37, p. 1633-1656, Saint- Quentin, France, 1991.
- 6. DAVIDOVITS, J. Environmentally Driven Geopolymer Cement Applications. In: **GEOPOLYMER 2002 CONFERENCE**, 2002, Melbourne.
- 7. Dimas, D., GIANNOPOULOU L., PANIAS, D.. Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. **Journal of Materials Science**, Vol. 44 (2009), pp. 3719-3730.
- 8. DUXSON, P. *et al.* The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. **Colloids and Surfaces A: Physicochemical and Engineering Aspects**, v. 292, n. 1, p. 8–20, 2007b.
- 9. DUXSON, P.; PROVIS, J.L.; LUKEY, G.C.; VAN DEVENTER J.S.J.; The role of inorganic polymer technology in the development of "green concrete". **Cement and Concrete Research**, Vitoria, n. 37, p. 1590, Agosto 2007.
- 10. FENG, Dingwu; PROVIS, John L.; DEVENTER, Jannie SJ. Thermal Activation of Albite for the Synthesis of One □ Part Mix Geopolymers. **Journal of the American Ceramic Society**, v. 95, n. 2, p. 565-572, 2012.
- 11. FILIZZOLA, M., SEDIRA, N., LAMEIRAS, F.S. Comparação do uso de NaOH E KOH na ativação alcalina de estéril de mineração de ferro. XXVIII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa. Belo Horizonte, 2019.
- 12. GONÇALVES, D. K. C.; **Síntese e Caracterização de cimentos geopoliméricos comerciais**. 2016. 107 f. Dissertação (Mestrado) Escola de Engenharia Universidade Federal de Minas Gerais.
- 13. ISLAM, A.; ALENGARAM, U.J.; BIN JUMAAT, M.Z; BASHAR, J.J.; The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. **Revista Eletrônica de Materials and Design**, v. 56. 2014.
- 14. KE, X. *et al.* One-part geopolymers based on thermally treated red Mud/NaOH blends. **Journal of the American Ceramic Society**, v. 98, n. 1, p. 5–11, 2015.
- 15. KRÓL, M.; MINKIEWICZ, J.; MOZGAWA, W.; IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. **Journal of Molecular Structure**, v 1126. 2016.
- 16. LIEW, Y., M.; HEAH, C.,Y.; LI, L.,Y.; JAYA, N.,A.; ABDULLAH, M., M., A., B.; TAN, S.,J.; HUSSEIN, K.; Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder, **Construction and Building Materials**. 156 (2017) 9–18
- 17. LUUKKONEN, T. *et al.* One-part alkali-activated materials: A review. **Cement and Concrete Research**, v. 103, p. 21–34, 1 jan. 2018.
- 18. MURILLO, L. M.; DELVASTO, S.; GORDILLO, M.; A study of a hybrid binder based on alkali-activated ceramic tile wastes and portland cement. Sustainable and Nonconventional Construction Materials using Inorganic

3° Congresso Sul-Americano

de Resíduos Sólidos e Sustentabilidade

Bonded Fiber Composites, p. 291–311, 1 Jan 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780081020012000139.

- 19. NEMATOLLAHI, B. *et al.* Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. **Ceramics International**, v. 41, p. 5696–5704, 2015.
- 20. NOVAIS, R. M. *et al.* Novel porous fly ash-containing geopolymers for pH buffering applications. **Journal of Cleaner Production**, v. 124, p. 395–404, 2016a.
- 21. PROVIS, J. L.; VAN DEVENTER, J. S. J. Geopolymers. Structures, Processing, Properties and Industrial Applications. 1. ed. **Washington, DC: Woodhead Publishing Limited and CRC Press LLC**, 2009.
- 22. PROVIS, J. L.; BERNAL, S. A. Geopolymers and Related Alkali-Activated Materials. **Annual Review of Materials Research**, v. 44, n. 1, p. 299–327, 2014.
- 23. SEVERO, C. G. S., et al. Características, particularidades e princípios científicos dos materiais ativados alcalinamente. Revista Eletrônica de Materiais e Processos, v. 8, n. 2, 2013b.
- 23 VALCKE, S. L. A. *et al.* FT-IR and 29Si-NMR for evaluating aluminium–silicate precursors for geopolymers. **Materials and Structures,** v. 48, n. 3, p. 557–569, 2015.
- 24 YE, N., et al. Synthesis and strength optimization of one-part geopolymer based on red mud. **Construction and Building Materials.**, Vol. 111 (2016), pp. 317-325.
 - 25 ZHANG, Z. *et al.* Quantitative kinetic and structural analysis of geopolymers. Part 1. the activation of metakaolin with sodium hydroxide. **Thermochimica Acta**, v. 539, p. 23–33, 2012