

BIOMETANO ADVINDO DE RESÍDUOS ALIMENTARES É REALMENTE PROMISSOR? UM ESTUDO DE CASO DO REFEITÓRIO DA UNIVERSIDADE DE LEEDS, REINO UNIDO

DOI: http://dx.doi.org/10.55449/congea.14.23.III-024

Mariana Vieira Turnell Suruagy (*), Miller Alonso Camargo-Valero, Andrew B. Ross.

* Universidade Federal da Paraíba. mvts.biotech@gmail.com

RESUMO

A geração de resíduos alimentares (RA) está aumentando globalmente, o que sugere que o uso de resíduos para tecnologias energéticas é urgente e imperativo. Os resíduos alimentares da cantina da Universidade de Leeds apresentaram várias características que sugerem sua adequação para geração de biometano, como VS/TS (92%) e SCOD/TCOD (69,71%) em quantidades satisfatórias. A adequação dos resíduos alimentares para a geração de metano foi testada pela aplicação de três razões I/S diferentes (3, 2 e 1) com tamanho de partícula de 1 mm, usando testes de BMP. O Tempo de Digestão Técnica foi aperfeiçoado pela 1:1, reduzindo em 142,8% o tempo necessário para atingir 80% do metano total produzido durante os 28 dias de digestão em comparação com relações I/S mais altas, o que pode implicar em uma redução de custos para a indústria de digestão anaeróbica (DA). Nesse caso, a principal via para a produção de metano foi a metanogênica acetoclástica. No entanto, I/S maiores (3:1 e 2:1) exibiram uma melhor produção cumulativa de metano e estabilidade do processo, apesar da inibição da atividade da bactéria degradadora de ácido propanóico. Constatou-se que a produção de metano advinda da DA de RA da literatura foi inversamente proporcional à relação S/I, tendo seu volume final afetado negativamente pela diminuição das concentrações de inóculo. O uso de substratos orgânicos sólidos, como os RA, gerados por exemplo em cantinas, quando aplicadas ao processo de DA, apresentam-se como potencial solução para a gestão dos resíduos sólidos e geração de energia renovável, como biometano, evitando assim, que esses sejam direcionados à lixões e aterros, contribuindo para a produção de gases de efeito de estufa, contaminação de lençóis freáticos e degradação ambiental como um todo.

PALAVRAS-CHAVE: Digestão anaeróbica, resíduos alimentares, energias renováveis, biometano.

INTRODUÇÃO

Prevê-se que, globalmente, aproximadamente 2,5·10⁹ toneladas de resíduos alimentares (RA) serão geradas até 2025 (KARTHIKEYAN *et al.*, 2018). Desde o momento em que os alimentos são produzidos, até à sua embalagem, distribuição e armazenamento, é necessária a utilização de uma série de recursos ambientais como a água, terra, combustíveis e energia. Essas etapas emitem gases de efeito estufa, contribuindo assim para as mudanças climáticas. Portanto, estratégias sustentáveis devem ser investigadas como meios não apenas para tratá-los, mas para recuperar produtos valiosos, incluindo energia. A mudança para sistemas de energia sustentáveis oferece uma solução promissora para reduzir a poluição ambiental e fornecer um suprimento de combustível renovável em um forte contexto emergente de economia circular e sustentável (ELSAYED *et al.*, 2019).

Os RA têm sido considerados uma fonte economicamente atraente para a produção de energia. Por outro lado, a sua composição à nível doméstico e dos serviços de alimentação (restaurantes, cantinas, refeitórios, etc.) varia significativamente de região para região no mundo. Na Europa, por exemplo, é composto por 40% de vegetais e fruta, 33% de massas e pão, 17% de produtos lácteos (incluindo ovos) e 9% de resíduos de carne e peixe, enquanto na Ásia, em particular no Japão, China e Coreia do Sul é composto por 56% de vegetais e frutas, 34% de arroz e macarrão, e apenas uma pequena fração (cerca de 10%) devido a peixes, resíduos de carne e laticínios. Portanto, com as características/composição do substrato possuindo grande variação à nível mundial, e este parâmetro influenciando significativamente o desempenho do processo Digestão Anaeróbica (DA), há um claro desafio ao otimizar a cadeia de abastecimento de biogás e/ou biometano para produção de energia renovável (LE PERA et al., 2022).

OBJETIVOS

Este estudo visa analisar a viabilidade de RA coletados do refeitório da Universidade de Leeds, Inglaterra como substrato para a produção de metano por meio da Digestão Anaeróbica Mesofilica (MAD), bem como o uso de proporções de Inóculo para Substrato (I/S) como uma variável operacional chave para otimizar o tempo técnico de digestão e rendimento de metano em reatores de batelada.

METODOLOGIA

Amostras de resíduos alimentares foram coletadas do refeitório estudantil da Universidade de Leeds, em lixeiras monitoradas separadamente, contendo RA da cozinha bem como dos pratos servidos aos estudantes e funcionários. Em seguida, foram separados manualmente, diariamente após cada coleta, em componentes orgânicos e inorgânicos. As amostras de RA foram moidas, primeiro usando uma máquina de moer manual e depois trituradas com um processador de alimentos Nutribullet[®] para obter uma pasta homogênea de tamanho de partícula de 1 mm com base em Suruagy et al (2023). A melhor relação Inóculo/Substrato (relação I/S), para a digestão anaeróbica mesófila de RA foi determinada pela mistura de substrato e inóculo em diferentes proporções calculadas com base em Sólidos Voláteis (SV). As razões I/S testadas foram 1, 2 e 3.

O lodo de esgoto usado como inóculo foi obtido de um digestor anaeróbico mesófilo da ETE - Yorkshire Water, em Bradford, Reino Unido. O inóculo fresco foi aclimatizado com RA por 30 dias pela adição de 0,2 g-RA/(L·dia). O Teste de Potencial de Biometano (BMP) foi utilizado como ferramenta para avaliar a produção de metano das misturas de RA e inóculo por um Sistema Automático de Teste de Potencial de Metano II (AMPTS II)[®] da Bioprocess Control. Resíduos alimentares de 1mm e diferentes relações I/S foram colocados em garrafas Duran autoclavável de 500 ml, com volume de trabalho de 400 ml, equipados com agitadores e rolhas de borracha. Após a vedação, gás nitrogênio foi injetado por 3 a 5 minutos para remover vestígios de oxigênio. Em seguida, as garrafas foram incubadas em banhomaria para controle da temperatura mesófila a 37°± 0,5°C. O CO₂ foi removido através de solução contendo NaOH a 3M. Ácidos orgânicos voláteis foram medidos usando um cromatógrafo a gás - GC (Agilent Technologies, 7890A). Para determinar o biometano proveniente do inóculo, amostras em branco foram preparadas para cada conjunto de experimento, contendo apenas inóculo e água destilada. Todos os ensaios de BMP foram conduzidos em triplicata. Ao longo do trabalho experimental do BMP foram coletadas amostras de cada reator, incluindo brancos nos dias 0, 2, 4 e 7. A partir daí as amostragens foram realizadas uma vez por semana, até o dia 28 (último dia da digestão). A produção diária de metano por volume de cada reator foi medida automaticamente e relatada em condições normais (Temperatura e Pressão Padrão (STP): 0°C e 1 ATM) pelo sistema de software AMPTS II[®]. Os rendimentos de metano foram normalizados em relação à quantidade total de substrato/sólidos voláteis adicionado em cada reator. Testes estatísticos Anova-One way foram realizados com pacote estatístico OriginPro[®] versão 2018.

RESULTADOS

A amostra coletada foi analisada quanto à fração orgânica e inorgânica. A composição da amostra variou significativamente durante o período de coleta (Figura 1), com fração orgânica média diária de 69,3% e fração inorgânica média diária de 30,7%. Foi coletado um total de 52,95kg de RA, dos quais 37,40kg corresponderam à fração orgânica e 15,55kg à fração inorgânica (papel, plástico e outros). A composição da fração orgânica variou ao longo dos pontos de coleta, sendo composta por alimentos mistos cozidos e não cozidos como: arroz branco cozido, batata frita, pizza, pão, além de cascas e pedaços de frutas e legumes (banana, tomate, cebola, brócolis, quiabo, batata e outros). A proteína dos resíduos incluiu aves, carne bovina, ovos e peixe.

Os teores de sólidos totais (ST) (31,89 mg/kg), sólidos voláteis (SV) (29,60mg/kg) e teor de umidade (68.11%) do presente estudo são consistentes com outros trabalhos na literatura (ZHANG et al., 2007). Sólidos voláteis podem ser usados como uma medida do conteúdo orgânico em uma amostra, o qual tem influência na produção final de biometano, uma vez que atua como fonte de alimento para as bactérias no reator. Danlami Yavini e Namo (2014) demonstraram que a porcentagem de conteúdo de SV do conteúdo de ST deve estar na faixa de 80 a 90% para produção de volume de biogás/biometano ideal. No presente estudo VS/TS 92,91%, sugerindo, portanto, a adequação da amostra para ser usada como matéria-prima na produção de biogás/metano, sem ajustes adicionais.

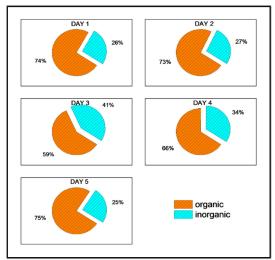


Figura 1: Porcentagens de frações orgânicas e inorgânicas da amostra durante o período de coleta de 5 dias.

A Demanda Química Solúvel de Oxigênio (SCOD), por outro lado, é um indicador da fração prontamente solúvel de matéria orgânica que pode ser usada pela comunidade microbiana como uma fonte disponível de energia ao digerir anaerobicamente o RA. Neste estudo, o SCOD/TCOD corespondeu a 69,71%, o sugere sua viabilidade como substrato para AD.

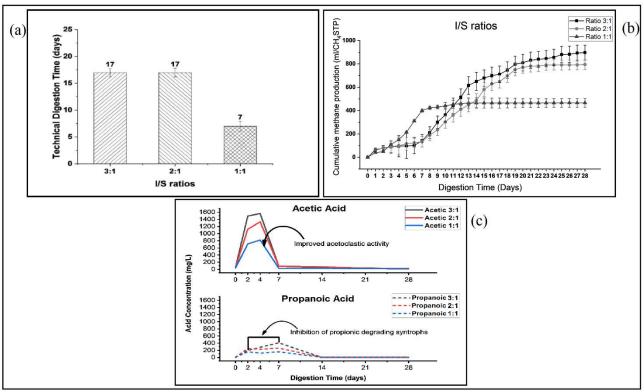


Figura 2: (a) Tempo de digestão técnica (T80) para as diferentes relações S/I estudadas; (b) Produção cumulativa normalizada de metano de amostras de resíduos alimentares tratadas em diferentes razões I/S; (c) Taxa de consumo de ácido propanóico e acético para as diferentes relações I/S.

O desempenho do processo de digestão pode ser acessado pelo tempo técnico de digestão (T80), que corresponde ao período (dias) levado pelo processo de digestão para atingir 80% do rendimento máximo de produção de metano durante sua duração (XIE *et al.*, 2011). Tanto a 3:1 quanto a 2:1 tiveram tempos técnicos de digestão semelhantes de 17 dias, correspondendo a um tempo 142,8% maior do que a proporção 1:1 (Figura 2a).

Zhang et al. (2007) digeriram RA anaerobicamente em sistema batelada, sob temperaturas termofílicas (50°C), e observaram que 80% do metano total produzido foi obtido após 10 dias de digestão. Tempos de digestão mais curtos implicam em redução do tempo de digestão técnica, minimizando assim os custos do processo. O menor tempo de digestão observado para a proporção 1:1 é resultado de 85,6% do metano total observado para a duração do teste de BMP ter sido produzido até o 7º dia de digestão. No entanto, esta constatação não garantiu um melhor desempenho do processo como um todo, com, por exemplo, um maior metano cumulativo para o período total de digestão, o que foi observado para razões I/S mais altas (Figura 2b). Maiores razões I/S ou maiores quantidades de bactérias contornam ou pelo menos reduzem os impactos da já esperada acidificação do sistema e possível falha da digestão. A razão I/S mais altas, implica em uma concentração suficiente de bactérias capaz de metabolizar o excesso de matéria orgânica e produtos intermediários, ácidos orgânicos voláteis (AGVs), em biometano (BOULANGER et al., 2012).

Embora a estrutura da comunidade bacteriana não tenha sido medida neste estudo, parece plausível inferir pela concentração de AGVs que a atividade metanogênica acetoclástica teria se tornado a principal via de formação de metano na proporção de 1:1, evidenciado pela rápida taxa de consumo de acetato (77,14 % consumida entre os dias 4 e 7, em comparação com 61,00% para a proporção de 3:1), sugerindo assim uma maior concentração de bactérias acetoclástica dentro do reator ou uma melhor taxa de atividade desses microrganismos (Figura 2c).

A figura 2c Também confirma a hipótese de inibição da atividade da bactéria degradadora de ácido propanóico postulada para a proporção 3:1, pois a concentração desse ácido entre os dias 4 e 7 quase dobrou (passando de 282,52 para 407,19mg/L) com seu subsequente acúmulo nesse período. Apesar de ter ultrapassado o limite da relação ácido propanóico/acetato de 1.4 mg/L (HILL *et al.*, 1987), a produção de metano não foi significativamente afetada, demostrando, portanto, a capacidade de recuperação do sistema.

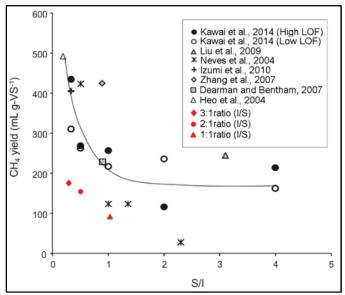


Figura 3: Rendimento de metano e relação S/I de trabalhos da literatura e atuais. Adaptado Kawai et al. (2014).

Vários trabalhos de pesquisa relataram a correlação entre o rendimento de metano e a quantidade de substrato versus inóculo usado durante a digestão anaeróbia do AR. Os resultados, incluindo os deste trabalho, estão representados na Figura 3. Na maioria dos casos, a produção de metano advinda da digestão anaeróbica de RA da literatura foi inversamente proporcional à relação S/I e negativamente afetada pela diminuição das concentrações de inóculo (KAWAI *et al.*, 2014), pelas razões já explicadas. Ademais, o saldo de metano para a razão 3:1 foi de 177.92 ml/gVS adicionado, em contraste com 156 e 89.41ml/gVS add do 2:1 e 1:1; o que está em consonância com resultados reportados na literatura (Figura 3). Análises estatísticas (p < 0.05) apontaram para o 3:1 como ótimo na digestão mesófilica de alimentos.

CONCLUSÕES

Em geral, a caracterização da amostra composta de RA do refeitório da universidade de Leeds revelou sua adequação como potencial substrato para digestão mesofilica anaeróbica, com quantidade suficientes de TS, VS e SCOD para produção de biometano.

Uma razão I/S mais baixa (1:1) promove um tempo de digestão técnica (T80) consideravelmente menor que para I/S mais altos, reduzindo, portanto, os custos da digestão. No entanto, I/S mais altas apresentam um melhor desempenho do processo como um todo, com, por exemplo, um maior metano cumulativo para o período total de digestão. Tal característica a longo prazo, pode ser visto como economicamente viável e interessante, especialmente em processos de co-digestão que requerem longa duração e maior estabilidade do processo na indústria de digestão anaeróbica. O uso de RA, gerado em grandes quantidades em estabelecimentos como cantinas no processo de DA apresentam-se como potencial solução para a gestão dos resíduos sólidos e geração de energia renovável, como biometano, evitando seu despejo em lixões e aterros contribuindo para a degradação ambiental como um todo.

REFERÊNCIAS BIBLIOGRÁFICAS

- Boulanger, A.; Pinet, E.; Bouix, M.; Bouchez, T.; Mansour, A. A. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, vol. 32, n° 12, p. 2258–2265, dez. 2012. DOI 10.1016/j.wasman.2012.07.024. Disponível em: http://dx.doi.org/10.1016/j.wasman.2012.07.024.
- 2. Danlami Yavini, T.; Namo, J. Comparative Study of Mesophilic Biogas Production Potentials of Selected Agro-Wastes Enhanced Heavy Oil Recovery Project View project Application of Geography information system (gis) to remote sensing to investigate mineral deposit in Wammako area View project. [S. l.: s. n.], 2014. Disponível em: https://www.researchgate.net/publication/319448292.
- 3. Elsayed, M.; Abomohra, A. E. F.; Ai, P.; Jin, K.; Fan, Q.; Zhang, Y. Acetogenesis and methanogenesis liquid digestates for pretreatment of rice straw: A holistic approach for efficient biomethane production and nutrient recycling. **Energy Conversion and Management**, vol. 195, n° May, p. 447–456, 2019. DOI 10.1016/j.enconman.2019.05.011. Disponível em: https://doi.org/10.1016/j.enconman.2019.05.011.
- Hill, D. T.; Cobb, S. A.; Bolte, J. P. Using Volatile Fatty Acid Relationships To Predict Anaerobic Digester Failure. Transactions of the American Society of Agricultural Engineers, vol. 30, n° 2, p. 496–501, 1987. https://doi.org/10.13031/2013.31977.

XIV Congresso Brasileiro de Gestão Ambiental Natal/RN – 07 a 10/11/2023

- 5. Karthikeyan, O. P.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J. W. C.; Carrere, H. Pretreatment of food waste for methane and hydrogen recovery: A review. **Bioresource Technology**, vol. 249, n° September 2017, p. 1025–1039, 2018. DOI 10.1016/j.biortech.2017.09.105. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S096085241731670X.
- Kawai, M.; Nagao, N.; Tajima, N.; Niwa, C.; Matsuyama, T.; Toda, T. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresource Technology, vol. 157, p. 174–180, 2014. DOI 10.1016/j.biortech.2014.01.018. Disponível em: http://dx.doi.org/10.1016/j.biortech.2014.01.018.
- 7. Le Pera, A.; Sellaro, M.; Bencivenni, E.; D'Amico, F. Environmental sustainability of an integrate anaerobic digestion-composting treatment of food waste: Analysis of an Italian plant in the circular bioeconomy strategy. **Waste Management**, vol. 139, p. 341–351, 15 fev. 2022. https://doi.org/10.1016/j.wasman.2021.12.042.
- 8. Suruagy, M. V. T; Ross, A. B.; Babatunde, A. Influence of microwave temperature and power on the biomethanation of food waste under mesophilic anaerobic conditions. **Journal of Environmental Management**, vol. 341, p. 117900, set. 2023. https://doi.org/10.1016/j.jenvman.2023.117900.
- 9. Zhang, R.; Elmashad, H.; Hartman, K.; Wangang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. **Bioresource Technology**, vol. 98, no 4, p. 929–935, 2007. DOI 10.1016/j.biortech.2006.02.039. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0960852406000940.