

AVALIAÇÃO DA PEGADA HÍDRICA DO ARQUIPÉLAGO DE FERNANDO DE NORONHA – PE, BRASIL

Flávio Leôncio Guedes (*), Antônio Italcy de Oliveira Júnior, Natanael Batista Pereira Alves, Jonathas Gomes de Carvalho Marques, Thamirys Suelle da Silva

* Universidade Federal de Pernambuco – UFPE, e-mail f 1 guedes@hotmail.com

RESUMO

O crescimento da demanda por recursos hídricos associados às mudanças climáticas têm resultado em desafios ambientais em todo o mundo. O cálculo da Pegada Hídrica é uma das ferramentas que estima o consumo de recursos hídricos, e se apresenta como um mecanismo capaz de fornecer dados essenciais para a construção de estratégias e manejo, resultando na representatividade da água doce usada direta ou indiretamente. Em função da população flutuante do Arquipélago de Fernando de Noronha decorrente do turismo e de todas as atividades desenvolvidas na ilha, existe grande demanda por água, exigindo a realização de estudos capazes de quantificar o consumo de água na ilha. A quantificação da Pegada Hídrica foi realizada de acordo os padrões globais contidos no Manual de Avaliação da Pegada Hídrica. O resultado da Pegada Direta Total da Ilha foi de 2.499.071,767 m³. A análise por tipo de Pegada Hídrica indica que 99,75% devem-se à Pegada Cinza, 0,22% à Azul e 0,027% à Verde. Com o diagnóstico em mãos foi possível identificar que para reduzir a Pegada Hídrica da ilha, é necessário que se invista em medidas para a redução, principalmente, da Pegada Cinza.

PALAVRAS-CHAVE: Gestão ambiental, Ambiente Insular, Recursos Hídricos, Unidade de Conservação.

INTRODUÇÃO

A elevada demanda por recursos hídricos associados às mudanças climáticas têm resultado em desafios ambientais em todo o mundo. Esses fatores apresentam influência direta na qualidade das águas, contribuindo para a poluição e piora das características dos corpos hídricos, tornando imprescindível e desafiadora a gestão das águas (DAI; QIN; LU, 2021).

Diante da importância de conhecer e compreender todos os aspectos relacionados à utilização da água, pesquisadores desenvolveram indicadores capazes de refletir esta vertente. A pegada hídrica é uma das ferramentas da estimativa do consumo de recursos hídricos (LUO et al., 2018), apresentando-se como um mecanismo capaz de fornecer dados essenciais para a construção de estratégias e manejo, resultando na representatividade da água doce usada direta ou indiretamente (KIM et al., 2021).

A pegada hídrica agrega três subindicadores: pegada hídrica azul (PH azul), pegada hídrica verde (PH verde) e pegada hídrica cinza (PH cinza) (CHEN et al., 2020). A análise destas pegadas é importante pois fornece informações de sustentabilidade, sendo possível monitorar aspectos ambientais, econômicos e sociais que influenciam na gestão dos recursos hídricos.

O Arquipélago de Fernando de Noronha é composto por 21 ilhas, compreendendo uma área territorial de 26 km². A ilha principal é denominada Fernando de Noronha, com extensão de 17 km² (SECTMA, 2006) sendo a única ilha habitável e com predominância do turismo como a atividade local.

Em função da população flutuante decorrente do turismo e de todas as atividades desenvolvidas na ilha, existe grande demanda por água, exigindo a realização de estudos capazes de quantificar o consumo de água no arquipélago. Desta forma, o objetivo deste estudo foi de realizar e avaliar a pegada hídrica do arquipélago de Fernando de Noronha, considerando a existência de três cenários: o consumo de água doce (PH AZUL), o consumo de água pluvial (PH VERDE) e o volume de água necessária para diluir contaminantes a níveis aceitáveis (PH CINZA).

OBJETIVOS

Realizar e avaliar a pegada hídrica do arquipélago de Fernando de Noronha, considerando a existência de três cenários: o consumo de água doce (PH AZUL), o consumo de água pluvial (PH VERDE) e o volume de água necessária para diluir contaminantes a níveis aceitáveis (PH CINZA).

METODOLOGIA

Inicialmente, foi realizada uma análise bibliográfica sobre o tema Pegada Hídrica (PH), que deu suporte para as etapas de caracterização sobre três tipologias do cálculo da PH da Ilha. Para o cálculo da PH foi utilizado o método desenvolvido por Hoekstra (2003) e ratificadas através da Water Footprint Network (WFN) em 2008. Dessa forma, pôde-se refletir o uso, consumo e contaminação da água de forma direta e indireta. A metodologia distinguiu três tipos de Pegadas: PH Azul, PH Verde e PH Cinza (OEL; HOEKSTRA, 2012).

Área de Estudo

Situa-se no Oceano Atlântico a nordeste do Brasil continental, formado por 21 ilhas, ilhotas e rochedos de origem vulcânica, ocupa uma área total de 26 km², dentre os quais 17 km² são da ilha principal, distando 545 km da capital pernambucana, Recife (Figura 1), e 360 km de Natal no Rio Grande do Norte. Trata-se de uma unidade de conservação (Parque Nacional Marinho) e distrito do estado de Pernambuco que é formado por quase 11.000 hectares de área. Segundo o censo do IBGE (2010), a população local era de 2630 pessoas (em 2010) com previsão de alcançar 3.101 habitantes em 2020.

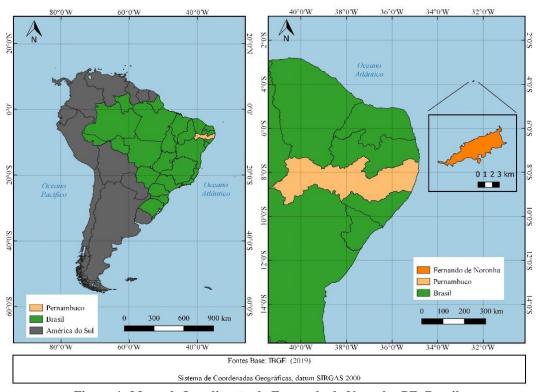


Figura 1: Mapa de Localização de Fernando de Noronha-PE, Brasil.

Mecanismos de Quantificação da PH

A quantificação da PH foi realizada de acordo os padrões globais contidos no Manual de Avaliação da PH (WFN, 2010), apresentadas abaixo:

```
PH Total = PH Azul (2) + PH Cinza + PH Verde + PH Indireta equação (1)
PH Azul = Evaporação + Incorporação + FluxodeRetornodeÁguaPerdida equação (2)
PH Cinza = ((Efl*Conc efl) - (Afl*Conc afl)) / (Conc Max - Conc Nat) equação (3)
PH Verde = ET + Inc equação (4)
```

Onde: Afl: Afluente; Efl: Efluente; Conc: Concentração; Max: Máxima; Nat: Natural; Cp: Quantidade de produtos; PHProd: Pegada Hídrica equivalente do produto; ET: evapotranspiração; e Inc: incorporação de água em uma planta.

Para o cálculo da PH foram usados dados de demanda hídrica e saneamento do site da Companhia Pernambucano de Saneamento de Pernambuco (Compesa), o método desenvolvido por Hoekstra (2003), ratificadas através da Water

Footprint Network (WFN), em 2008. Assim, foi refletido o uso, consumo e contaminação da água de forma direta e indireta. O método distinguiu três tipologias de Pegadas: PH Azul, PH Verde e PH Cinza (Tabela 1).

Tabela 1. Tipos e dimensões da Pegada Hídrica. Fonte: Water Footprint Network (2013) – adaptado

Uso direto da água	Uso Indireto da água	
PH VERDE	PH VERDE	Congumo do água
PH AZUL	PH AZUL	Consumo de água
PH CINZA	PH CINZA	Poluição da água

Pegada Hídrica de Fernando de Noronha

A avaliação de pegada hídrica foi criada por Arjen Hoekstra no ano de 2002 e se propõe, conforme Hoekstra (2011), a ser um indicador por meio do qual é possibilitado o entendimento da apropriação dos recursos hídricos, seja por meio do seu uso direto ou indireto.

Os setores avaliados (residencial, comercial, público), foram selecionados, seguindo a informação de faturamento de água em Fernando de Noronha pela empresa prestadora de serviço de água potável e rede de esgoto, a Compesa. Por se tratar de uma ilha, não foi considerado o setor industrial.

Foram estimados os efluentes residuais conforme o setor avaliado. Para o setor residencial, utilizou-se 10% de PH Azul, que é o volume estabelecido para atividades domésticas, de acordo com FAO e WFN. No comercial, foi utilizado o número de cidadãos da ilha com carteira assinada empregados no ano do último censo do IBGE. Já para o setor público, foi calculado o volume de água consumido por funcionário através de comparação e pesquisas de dados estatísticos coletados pela equipe do Projeto Pegadas de Cidades (2008).

A PH Cinza foi usada conforme os parâmetros de qualidade do efluente e afluente, representados pelos indicadores da Demanda Bioquímica de Oxigênio – DBO, em cinco dias e da Demanda Química de Oxigênio - DQO, disponibilizado pela Compesa a partir das análises que a empresa executa nas Estações de Tratamento de Esgoto (ETEs), que recebem esgoto em FN.

A PH Verde estimada, foi gerada pelas áreas verdes da ilha, foram utilizadas as ferramentas Cropwat e Climwat, elaboradas pela FAO.

RESULTADOS

Informações Primárias do Balanço Hídrico

As informações primárias do produto do balanço hídrico utilizados para o cálculo da PH, encontra-se de forma resumidas nas tabelas 2, 3 e 4 abaixo:

Tabela 2. Informações balanço hídrico para cálculo da PH Azul FN. Fonte: Elaborado pelo Autor

٠	Setor	Volume de Água Faturada – Afluente (m³) – 864 m³/dia	Volume de Água do Efluente (m³) – 82,7% domicílios com esgotamento sanitário
	Residencial, comercial e público	315.360	55.557,28
	PH Azul 10%		5.555,728

Tabela 3. Informações dos parâmetros utilizados para cálculo da PH Cinza FN. Fonte: Elaborado pelo Autor

Parâmetros de Qualidade (mg/L)	Setor residencial, comercial e público
Qualidade Máxima Permitida - DBO5	10
Qualidade Máxima Permitida – DQO	16,67
Qualidade Natural - DBO5	2
Qualidade Natural – DQO	4
Qualidade do Afluente - DBO5	2
Qualidade do Afluente – DQO	3,33
Qualidade do Efluente na entrada das ETE - DBO5	323,3
Qualidade do Efluente na entrada das ETE - DQO	422,4
Qualidade do Efluente na saída das ETE - DBO5	81,73
Qualidade do Efluente na saída das ETE - DQO	130,28
PH Cinza ((Efl*Conc efl) – (Afl*Conc afl)) / (Conc Max – Conc Nat)	2.492.834,728

Tabela 4. Informações dos parâmetros utilizados para cálculo da PH Verde FN. Fonte: Elaborado pelo Autor

Domicílios urbanos em vias públicas com arborização	95%
Produtividade Agrícola	0%
PH Verde FN (m³)	681,311 m ³

Tabela 5. Pegada Hídrica de Fernando de Noronha. Fonte – Elaborado pelo Autor

PH AZUL	5.555,728
PH CINZA	2.492.834,728
PH VERDE	681,311
PH TOTAL	2.499.071,767

CONCLUSÕES

A Pegada Hídrica Direta Total (PH Total) da Ilha de Fernando de Noronha foi de 2.499.071,767 m³. A análise por tipo de PH indica que 99,75% deve-se à PH Cinza, 0,22% à PH Azul e 0,027% à PH Verde. Com esse diagnóstico em mãos, identifica-se que para reduzir a PH da cidade, é necessário que se invista em medidas para a redução, principalmente, da PH Cinza.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. CHEN, K.; WANG, H.; HAN, J.; LIU, W.; CHENG, H.; LIANG, B.; WANG, A. The application of footprints for assessing the sustainability of wastewater treatment plants: A review. **Journal of Cleaner Production**, v. 277, 2020.
- COMPESA Companhia Pernambucana de Saneamento. Abastecimento Fernando de Noronha. [2007].
 Disponível em: https://servicos.compesa.com.br/modernizacao-dos-dessalinizadores-abastecimento-de-agua-em-fernando-de-noronha. Acesso: 20 de setembro de 2018.
- 3. DAI, C.; QIN, X. S.; LU, W. T. A fuzzy fractional programming model for optimizing water footprint of crop planting and trading in the Hai River Basin, China. **Journal of Cleaner Production**, v. 278, 2021.
- 4. HOEKSTRA, A. Y. Proceedings of the International Expert Meeting on Virtual. Water Trade IHE Delft, The Netherlands. Value of Research Report Series, n. 12, 2003.
- 5. HOEKSTRA, A. Y. How sustainable is Europe's water footprint? **Water and Wastewater International**, v. 26, p. 24-26, 2011.
- 6. IBGE Instituto Brasileiro de Geografia e Estatística. **Fernando de Noronha**. Disponível em: https://cidades.ibge.gov.br/brasil/pe/fernando-de-noronha/panorama. Acesso: 08 de setembro de 2020.
- 7. KIM, Y. W.; HWANG, Y. W.; JO, H. J.; KIM, J. Water footprint assessment in expressway infrastructure system. **Journal of Cleaner Production**, v. 280, n. 2, 2021.

- 8. LUO, P.; YANG, Y.; WANGA, H.; GUA, Y.; XUA, J.; LIA, Y. Water footprint and scenario analysis in the transformation of Chongming into an international eco-island. **Resources, Conservation & Recycling**, v. 132, p. 376-385, 2018.
- 9. OEL, P. R. V; HOEKSTRA, A. Y. Towards quantification of the water footprint of paper: A first estimate of its consumptive component. **Water Resource Management**, v. 11, p. 9942-9949, 2012.
- 10. SECTMA Secretaria de Ciência Tecnologia e Meio Ambiente. **Atlas de bacias hidrográficas de Pernambuco**. Recife: SECTMA, 2006. 104p.
- 11. WFN. **Manual de Avaliação da Pegada Hídrica**. [2013]. Acesso em: http://ayhoekstra.nl/pubs/Hoekstra-et-al-2013-ManualDeAvaliacaoDaPegadaHidrica.pdf. Acesso: 08 de setembro de 2020.